
Zip, Zap, Boing: The Hermeneutics of Play
Kaleb Gezahegn, Alex Wardle-Solano, Keoni Spencer

1 ABSTRACT
The use of multiple trainingmodalities to improve an agent’s perfor-

mance in reinforcement learning tasks is an open area of research.

In this paper, we investigate the merits of combining ‘learning by

observation’ and ‘learning by correction’ whilst training an agent

to perform a simple, multi-player, turn-based game called ‘Zip, Zap,

Boing’. The testing and implementation of our models were done in

a virtual game environment, seeking tomodel the actions of humans

in a real game of ‘Zip, Zap, Boing’. Two models were considered: a

simple tabular approach, and a deep learning-based approach. Our

models are then deployed in a real-world setting where our robot,

“Shutter”, detects and classifies moves from human players in its

field of view and actively participates in the game through a series

of move outputs. We seek to investigate the effect of imperfect or

erroneous demonstrations by human ‘experts’ during the phase

of ‘learning by observation’ and attempt to demonstrate the merit

of using multiple training modalities whilst training an agent to

perform a task. It was found that our agent was relatively robust

in the face of erroneous moves by human experts, provided the

moves were correctly labeled as errors. However, it was found that

when erroneous moves went unnoticed the performance of our

models quickly degenerated. It was also found that our model’s per-

formance improved far more quickly when combining observation

with correction.

2 INTRODUCTION
The task in this project was to create an agent which, through

observation of real-world gameplay, could infer the rules of and

participate in a game of ‘Zip, Zap, Boing’. The task has been split

broadly into two subtasks: the first focused on the reinforcement

learning aspects of building a game-playing agent, and the second

focused on pose detection and interfacing through Shutter.

Figure 1: Workflow for ‘Zip, Zap, Boing’ task

The use of multiple training modalities to improve an agent’s

performance in reinforcement learning tasks is an open area of

research. In this paper, we investigate the merits of combining

‘learning by observation’ and ‘learning by correction’ whilst train-

ing an agent to perform a simple, multi-player, turn-based game

called ‘Zip, Zap, Boing’.

‘Zip, Zap, Boing’ is an interactive, multi-player, turn-based game.

A random player is chosen to initiate the game. When it is a player’s

turn, they are able to pass on the turn to another player using one

of three moves: to pass the turn to the player on your left you

simultaneously point left and say ‘Zip’; to pass the turn to the player

on your right, you simultaneously point right and say ‘Zap’; to pass

the turn back to the player who gave it to you, you simultaneously

raise both arms and say ‘Boing’. If a mistake is made, the game is

reset and the player who made the mistake begins a new round. You

can only play a move on your turn, and the legality of the moves

you may play is context-dependent. The rules for legal moves are

as follows:

(1) If you are selected to initiate the game, you can play either a

‘Zip’ or a ‘Zap’

(2) If you receive the turn from a ‘Zip’, you can play either a

‘Zip’ or a ‘Boing’

(3) If you receive the turn from a ‘Zap’, you can play either a

‘Zap’ or a ‘Boing’

(4) If you receive the turn from a ‘Boing’ there are two scenarios

• You receive the ‘Boing’ from the player to your left, in

which case you can pass the turn right with a ‘Zap’

• You receive the ‘Boing’ from the player to your right, in

which case you can pass the turn left with a ‘Zip’

We chose the ‘Zip, Zap, Boing’ game task for two primary rea-

sons. Firstly, ‘Zip, Zap, Boing’ presents us with a good ‘toy RL’

problem, in which we would expect, a priori, for an RL-based agent

to perform well. In fact, we might more aptly characterize this as

a ‘conceptual bandit problem’: the relative ‘goodness’ of a given

move is context-dependent, but the agent’s actions in the game

do not change the environment or the sum of expected rewards.

However, for the sake of consistency, we will frame this as an RL

problem in this paper. Secondly, the state and action spaces for

this problem are relatively small (10
3
), leading to computationally

tractable problems.

With the spirit of parallelizing work in mind, the workload for

this project was split into three tracks which were developed in

tandem. (1) Virtual Implementation of the RL Model, (2) Physical

Implementation of Shutter Outputs, (3) Physical Implementation

of Shutter Inputs. The execution of task (1) involved the creation

of a virtual game environment for the creation of synthetic data

and the creation of tabular and deep learning-based models. In

task (2) Shutter was configured to display a combination of ver-

bal and motion-based outputs on its turn. In task (3) shutter was

programmed to identify moves made by players based on simulta-

neous verbal and visual cues. Both supervised learning-based and



logic-based methods for move classification were considered. The

latter was found to work more consistently.

3 RELATEDWORK
Our project fits within a long trajectory of imitation learning and

inverse reinforcement learning-based approaches. We are choosing

to frame our problem as an IRL problem in the sense that we are

using observations to model a reward function as opposed to the

traditional imitation learning framework in which models compute

a policy without attempting to model the underlying reward. Exam-

ples of similar tasks are numerous, for example, Google DeepMind’s

use of Deep Q Learning to train agents on Atari games. A number

of works have been relevant to our approach:

i) “Algorithms for Inverse Reinforcement Learning”, Stuart Rus-

sell, Andrew Ng[3] - this is an early paper in inverse reinforcement

learning in which the issue of ‘degeneracy’ in reinforcement learn-

ing problems is addressed. This is the problem of having multiple

suitable policies for a given set of observations - this is likely to be

relevant to our project in which there are often multiple possible

policies/actions for a given state.

ii) “Apprenticeship Learning via Inverse Reinforcement Learn-

ing”, Pieter Abbeel, Andrew Ng[2] - another early paper in IRL

which goes into many of the implementation details for an IRL

algorithm. Though our current agent is very basic, for the final

milestone it is hoped that a more sophisticated model, akin to the

one outlined in this paper, could be tried for this problem.

iii) “Attention is All You Need”, Ashish Vaswani, Noam Shazeer

[4] - the attention model allows a model to retain ‘memory’ of past

time-steps. The simple version of the ‘Zip, Zap, Boing’ has no need

for memory because it can be thought of as a Markov model in

which a given state is only dependent on the previous state and

action, however, it might be interesting to incorporate an attention

model which would be capable of playing more complicated ver-

sions of our game with temporal dependencies.

iv) Reward-rational (implicit) choice: A unifying formalism for

reward learning.", Hong Jun Jeon, Smitha Milli, Anca D. Dragan[1]

- discuss the importance of agents learning from the rich pool of

‘implicit feedback’ that humans produce: this feedback could be

intentional or unintentional. The approach taken in this paper is

slightly different from ours as they model human behavior via a

Boltzmann-Rational policy and then use a Bayesian approach to

update a belief over possible rewards, something which we do not

do. However, the paper repeatedly stresses the importance of build-

ing agents that learn based on multiple types of implicit feedback

simultaneously and proposes a formalism for doing so.

4 TECHNICAL APPROACH
4.1 Virtual Game Environment
The virtual game environment is an attempt to virtually model the

Shutter robot playing a real game of ‘Zip, Zap, Boing’. It allows

the game to generate thousands of synthetic data points in a con-

trolled and time-efficient manner and to tentatively evaluate the

performance of our models before deploying them into a real game

environment. Moves made in the virtual game environment are

printed to the command line to help with visualization.

Certain assumptions about the ways in which real players partic-

ipate in this game were necessary for the construction of the model.

Namely, the model accounts for the fact that human participants

will occasionally make mistakes, and that on occasion these mis-

takes will go unnoticed, and the game will continue. Furthermore,

the model assumes that human participants are likely to make mis-

takes in a predictable or plausible manner and that these plausible

moves may go unspotted. From observation, it was noticed that hu-

mans would frequently confuse verbal and action-based responses.

For example, they might point left and say ‘Zap’ rather than ‘Zip’

or point right and ‘Zip’. In cases when these moves went unnoticed

by other players, the erroneous move was interpreted as being the

‘closest’ legal move. In the case where a player erroneously points

left and says ‘Zap’, the game might proceed as if the player had

played the legal move left + ‘Zip’.

Figure 2: Definitions of “Zip”, “Zap” and “Boing” moves

The game environment is defined using three classes: a ‘State’

class which defines the state of the game, a ‘Move’ class which

defines moves within the game, and the main ‘ZipZapBoing’ class

in which gameplay takes place. Due to the Markov nature of the

game, the state space is fully specified by three variables, the index

of the current player, the index of the player who passed the turn

to the current player and the ‘action’ that the previous player made:

“Zip”, “Zap”, “Boing” or “Reset” which indicates that the previous

turn was a mistake, and the game is being reinitialized. If there are

N players, then the total number of states is N x N x 4. The set of

possible actions in each state has a size of N x 3: N players that the

turn can be passed to and 3 ways in which the turn can be passed.

Thus, the total size of the state-action space is N x N x 4 x N x 3.

This is relatively small.

‘Move’ is the class we use to define the moves in our game and

takes two arguments: ‘pointer’ and ‘action’. Pointer is an integer

value that specifies the index of the player that the turn has been

passed to, and action specifies the thing that was said when the

turn was passed (i.e. “Zip”, “Zap” or “Boing”). Thus the three pri-

mary moves in our game are dynamically defined as follows, where

‘self.player’ is the index of the current player, ‘self.previous_sender’

is the index of the previous sender and N is the number of players.

The ‘ZipZapBoing’ class defines the actual workings of the game.

It requires three arguments: the number of players in the game,

the type of gameplay (either computer-generated moves or user-

inputted moves) and ‘error’ which specifies the proportion of the

time that our program generates an incorrect move. There are also

several class variables that are updated throughout the game: the

2



Figure 3: System Diagram

current player, the index of the previous player, and the move made

by the previous player, all of which are updated after each move.

The entire gameplay then stores the state in a class variable called

‘ledger’, a dictionary of timestamped actions taken. Each log in the

ledger is a three-element array defining the state of the game, a

two-element array defining the action taken and an integer value

defining the inferred reward for that state-action pair.

In order to mimic ‘observational’ and ‘participatory’ styles of

learning, the virtual environment comes pre-configured with two

‘gameplay’ settings: one in which “virtual Shutter” simply observes

a group of “virtual experts” playing a game, and another in which

“Virtual Shutter” inserts itself into the game and actively partici-

pates. In the participatory gameplay mode, when a player in the

game space takes an action and gameplay continues, we assume

that the action was a good one and ascribe that state-action to a

positive reward of +1: this is the reward-rational assumption. An-

other way of framing this is to say that when a move is made and

gameplay continues, there was an implicit choice by the partici-

pants between stopping the game or allowing it to continue. The

fact that they allow it to continue implies that the move was legal

and thus should be given a positive reward. If a move is flagged

as an error, then we ascribe the state-action pair a reward of -10.

This provides us with the data on which we train our models in an

online fashion.

To better visualize the proceedings of the game, each move is

printed onto the console as shown in Figure 4.

In order to play the game with Shutter, beyond the simulation

environment, the ‘zip_zap_boing.py’ script will switch from gener-

ating moves to receiving them. Here, the game takes in an inter-

preted player pose and ID as a String and uses it to update the game

state. The ID passed corresponds to the player’s ID and position

in the game array. Array indices update when their correspond-

ing real-world player takes their turn, and when the player index

becomes zero, then Shutter predicts an action.

This means of game input limited the number of changes needed

between playing the game in simulation and the real world and

enabled the model Shutter trained on to accurately apply to playing

with user input.

4.1.1 Tabular Model. In the tabular approach, we create an N x N

x 4 x N x 3 ‘reward matrix’ which stores a reward value for each of

the possible state-action pairs. After each observation, this reward

matrix is updated by adding the reward value for that observa-

tion point to the appropriate index in the reward matrix. This was

ultimately the model that we chose to use.

4.1.2 Deep Learning Model. In the deep-learning approach, obser-

vations are treated as labeled inputs to a neural network where the

state is the input, and the reward is the label. The indexes used to

Figure 4: Visualisation of moves

define the state of the game are converted to categorical values and

flattened to create an input vector of dimension N + N + 4. The neu-

ral network maps to an output vector of size N x 3 which represents

probabilities over the next move in the game. The output is of size

N x 3 because there are three possible actions that can be taken and

N players that the action can be directed at. The neural network is

trained online using an online gradient descent algorithm.

Though the deep learning model did work, it was ultimately

found to be an overly heavy-handed approach for such a simple

problem. Because of the tractability of this problem, it was not

necessary to approximate the function that maps from states to

actions using a neural network, we could just represent this function

directly using the tabular approach. In fact, even a very modest

neural network architecture had parameters of orders greater than

10
4
. Given that our tabular approach only has entries on the order

of 10
3
, from a memory and computational perspective there is no

motivation for taking a deep learning approach for this task.

4.1.3 Model Evaluation. The performance of our model was evalu-

ated by feeding it a set of all possible legal contexts as inputs and

considering the proportion of the time that the model’s prediction

of the most likely next move was correct. The set of legal contexts is

simply the set of all states in the game that could be legally arrived

at. To illustrate, an accuracy of 85% means that the model correctly

predicts a legal next move for 85% of the legal contexts.

4.2 Body Tracking
In order for Shutter to participate in gameplay outside of a simula-

tion, the robot needs to be able to detect people in a real environ-

ment and interact with them. For the detection component, either

the Kinect camera on Shutter was used.

3



The Kinect is a very fast tool for feature detection on people,

capable of full-body pose tracking. It does not do hand data, which

meant a pivot from our original approach, but no less effective. This

device was chosen for the project because of its ability to classify

and locate a number of human features in real-time, the fact that it

already had a ROS wrapper, and because MediaPipe was incapable

of fulfilling the system’s needs. The Kinect pose interpretation

script is in the ‘interpert_pose.py’ script of the project, where the

code receives a marker array of human features, published by the

Kinect, and translates them into a ‘Zip’, ‘Zap’, or ‘Boing’. The script

runs as a node and publishes a String for the core game node to use.

Attached to the String is also an ID suffix, denoting which player is

performing the action.

Figure 5: Kinect features

The Kinect pose detection system locates 32 landmarks on the

human body and outputs each of their locations as a point. It is a

very robust means of detection and can identify landmarks even

when partially obscured.

The project implements pose tracking to isolate features on a

player’s arm and pelvis. Marker array message type is decomposed

into the ‘right shoulder’, ‘left shoulder’, ‘right wrist’, ‘left wrist’, and

‘pelvis’ points. From there, vectors are made from the shoulders

to their corresponding wrist points, and from the shoulders to the

pelvis. With these vectors, the angle between the two is calculated

and an action is assigned depending on whether the angle exceeds

the action activation threshold.

This action is then published to the ‘zip_zap_boing.py’ script to

update the game state.

4.3 Auxiliary Features
There were some additional auxiliary features added to increase

Shutter’s interactiveness with other people. For the purposes of

making Zip Zap Boing with Shutter more realistic, Shutter moves

and speaks its actions, much like a human would do if playing the

game. In order to move, each prediction of Shutter’s is published

and mapped to a corresponding pose. When Shutter chooses an

action, the correct pose is also published to its servos.

Additionally, players speak their actions aloud. When Shutter

chooses an action, it also publishes its action as a String to Tacotron,

a ROS wrapped library that translates text to speech and then

outputs it using any connected speakers (the computer’s in this

case). This greatly improved how realistic the game was.

5 EXPERIMENTS
5.1 Imperfect Demonstration by Experts

Figure 6: Accuracy Rate vs Observed Moves Given Different
Human Error Rates (Players = 10)

One of the main observations made whilst watching people

play ‘Zip, Zap, Boing’ was that players would often make mistakes

and that these mistakes would often go unnoticed. We wanted to

investigate the impact that these two error cases would have on

model accuracy.

In considering the case when mistakes were made but were cor-

rectly flagged by players as mistakes, the virtual game environment

generates a plausible erroneous move some proportion of the time

specified by a ‘human_error’ variable Interestingly, it was found

that when the error rate was 0 the model never reached perfect

accuracy (see figure 6) as it never observed the initialization states

of the game because this state only occurs after a player makes a

mistake. Furthermore, it was found that the model was robust in

the face of erroneous moves and converged to 100% for error rates

as high as 0.5 (see figure 6).

It was found that unnoticed errors by demonstrators were a

much bigger problem for model accuracy. This experiment was

conducted by fixing the error rate at 0.2 (i.e. erroneous moves are

made 20% of time) and then defining a second variable ‘errorpass’

which defines the proportion of the time that erroneous moves go

on unnoticed. On the occasions where an error goes unnoticed, the

‘nearest legal move’ to the erroneous move is calculated and the

game continues as if it was the nearest legal move that was played.

Even for error pass rates as low as 0.2, the model does not reach

full accuracy after 1000 observations. For error pass rates of 0.6 the

model degenerates to near 0 accuracy.

4



Figure 7: Accuracy Rate vs Observed Moves Given Different
Human Error-Pass Rates (Players = 10, Error rate = 0.2)

This result is perhaps intuitive: making a mistake as an expert

demonstrator is acceptable, so long as we identify the action as

being a mistake.

5.2 Learning Using Multiple Modalities
We evaluated the merits of learning using multiple modalities by

comparing the performance of such regimes against a benchmark

in which the model only learns from correction. In the benchmark

case, our agent plays ‘Zip, Zap, Boing’ without observing any of

the moves made by other players. At each timestep, the agent

predicts the next move using an epsilon-greedy policy and receives

a ‘correction’ from the environment if it makes a mistake. The

number of moves required for the benchmark model to reach 100%

accuracy was in the order of thousand of moves, compared to an

order of hundreds when trained using a combination of observation

and correction.

5.3 Hand Tracking

Figure 8: MediaPipe’s Hand Tracking Landmarks

Initially, rather than utilizing the Kinect camera to detect player

pose and gestures, MediaPipe was our choice feature extraction

library. The project aimed to detect distinct hand gestures, and map

those to ‘Zips’, ‘Zaps’, and ‘Boings’.

MediaPipe hands is an ML pipeline model mainly composed of

a Palm Detection model that detects initial hand locations and a

hand landmark model that takes image frames and localizes twenty-

one three-dimensional coordinates on the hand. These coordinates

correspond to predefined landmarks that allow us to create very

realistic representations of the hand even when certain fingers or

features of the hand are occluded.

We collected data where we recorded these coordinates from

videos and then annotated the data to train a ResNet-18 CNN that

would take Shutter’s Intel RealSense camera feed in real-time, and

classify each gesture as a player makes it.

Figure 9: Data Collection Pipeline Demo

Our training pipeline for our gesture classifier consisted mainly

of a script that would display shutter’s RealSense camera feed and

would superimpose 21 hand landmarks using MediaPipe’s hand

detector model onto the feed. This happened as the user is demon-

strating different gestures corresponding to each possible move in

the game. After 2-3 minutes of data collection, the script is manually

terminated and the image frames are converted to a .webm video

and written to disk while the coordinates of the hand landmarks

from our model are saved as a csv file. We then take our video

and upload it to a VGG Video Image Annotator and label the

segments where we identify a game gesture with its corresponding

move label and save the temporal segments as a csv file.

We were then hoping to time-synchronize the annotated tem-

poral segment csv and the hand landmark csv and feed it into a

pre-trained resnet18 model to create a model that can classify our

3 different gestures. Unfortunately, we were running low on time

and were able to get moves from body poses using Kinect, so we

decided to focus on other aspects of the project.

5

https://www.robots.ox.ac.uk/~vgg/software/via/demo/via_video_annotator.html


5.4 Body Tracking
The first body tracking library utilized was the YOLO classification

model. YOLO is very modular and easily implemented, and so it was

an attractive first choice. However, the script’s performance was

quite poor with massive amounts of lag. Moreover, the library does

not grant human feature segmentation, meaning the hand’s position

could not easily be extracted explicitly from the detected person’s

general location. In order to determine the pointing direction of a

player, a contour would have to be taken of the person, with their

area and extremity locations as deciding factors of their chosen

action.

Given the difficulty of implementing this, mediapipe and the

Kinect became the most viable methods of determining body pose,

specifically because they are capable of returning the location of

individual body parts.

MediaPipe was chosen next given that the library is better suited

to hand detection and gesture recognition than the Kinect, allowing

both the hand and body detection scripts to share a common library.

However, initial testing showed mediapipe as less accurate with

numerous people, the stock library did not seem to support multiple

person detection, and the mediapipe code was not easily discernible.

For the final implementation, Microsoft’s Azure Kinect was used.

The tool documentation was excellent, and it already had ROS

wrappers so that it could be easily integrated into the Zip Zap

Boing project.

Figure 10: MediaPipe Body Tracking

The Kinect published near real time body tracking data in the

form of a marker array. The Kinect segments a person into 32

features, and publishes the pose of each. Using this data, Shutter

could use the differences in x and y pose data to reliably compute

whether or not a player had their arms raised.

Interestingly, the Kinect would indiscriminately publish human

pose data, so retrieving a person’s position was sometimes ham-

pered by other people in the frame. The Kinect did not guarantee

that after the pose one person was sent, it would send someone

else’s. However, this did not detract from overall game performance.

It was also found that the Kinect would randomly assign each

skeleton an ID. This ID was unique for each person in the frame,

but the Kinect would not remember an ID in the case an individual

walked out of the camera’s view. This meant that in the case a

player leaves Shutter’s immediate area, the game would need to be

restarted to bring them back in.

5.5 Speech to Text
An essential aspect of playing Zip Zap Boing with other people is

saying what move you are making out loud. If the move you say

out loud doesn’t line up with the gesture you make, you lose that

around based on the standard rules of the game. In order to capture

this feature, we used Google’s speech to text API to get audio input

from the game participants. After some testing, we were able to

generate sets of words that the model associated with Zip Zap and

Boing to accurately interpret a user’s move or have it output none

if the move was not recognized.

6 CONCLUSION & FUTUREWORK
It was found that our agent was relatively robust in the face of erro-

neous moves by human experts, provided the moves were correctly

labeled as errors. However, it was found that when erroneous moves

went unnoticed the performance of our models quickly degener-

ated. It was also found that our model’s performance improved far

more quickly when combining observation with correction.

After the incorporation of the Kinect and user inputs, as well as

Shutter’s action outputs, we found that Zip Zap Boing with Shutter

was both interactive and viable. Shutter responded to actions in

kind with its own, was able to choose accurate actions, and play

the game as a real person would. On errors and incorrect moves,

the game would start up again quickly as normal and ultimately

had a life-like feel to it.

In the future, we would seek to add more feedback to the system

in the form of a button or true sentiment analysis so that we exper-

iment on Shutter’s ability to learn from feedback. Eventually, by

incorporating other learning modalities, speech sentiment analysis

and facial mapping, Shutter may learn to play better than humans.

We ran into concurrency issues when attempting to get user

input from both poses and audio feedback so we chose to only

take input from one stream. We hope to eventually capture this

additional aspect of the game by solving the concurrency issues

and also having shutter respond when an erroneous move is made.

The mapping code between Kinect IDs and player indices is also

rudimentary and does not account for player positioning. Making

this framework more adaptable and capable of adding new players

would go a long way in improving Shutter’s player realism.

We also hope to flesh out our model for detecting hand ges-

tures so that playing the game resembles how the game is played

traditionally. This would allow us to create different groupings

of gestures corresponding to each game move which allows for

additional complexity to how the game is played.

6



REFERENCES
[1] J., J. H., S., M., and D., . D. A. Reward-rational (implicit) choice: A unifying

formalism for reward learning (Version 4)”. NeurIPS 2020 (2020).
[2] P., A., and A., . N. Apprenticeship learning via inverse reinforcement learning. In

Twenty-first international conference onMachine learning”. ICML ’04. Twenty-first

international conference (2004).
[3] S., R., and A., N. Algorithms for Inverse Reinforcement Learning”. ICML ’00:

Proceedings of the Seventeenth International Conference on Machine Learning (2000).
[4] Vaswani, A., N., S. N. P., J., U., L., J., N., G. A., L., K., and I., P. Attention Is All You

Need”. ICML ’04. Twenty-first international conference (2017).

7


	1 Abstract
	2 Introduction
	3 Related Work
	4 Technical Approach
	4.1 Virtual Game Environment
	4.2 Body Tracking
	4.3 Auxiliary Features

	5 Experiments
	5.1 Imperfect Demonstration by Experts
	5.2 Learning Using Multiple Modalities
	5.3 Hand Tracking
	5.4 Body Tracking
	5.5 Speech to Text

	6 Conclusion & Future Work
	References

