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Abstract 

Professor Scassellati’s social robotics lab has been working on a project that is attempting to 
build a robot to assist and protect an Electrical technician. The physical environment for an 
electrical technician’s workspace is simplified for the sake of the project, yet it is still very 
difficult to represent virtually. Not only are there multiple components within the junction box 
and tools that need to be kept track of, but the human agent also needs to be tracked while 
moving and interacting with these different components. The extensive nature of the 
environment and the distribution of its components require that the robotic system employ 
machine learning models on different camera angles to observe and monitor the surroundings 
from various perspectives. This requires a lot of processing which is problematic when designing 
a system that requires accuracy and real-time operation. This research paper focuses on two 
different approaches to addressing the problem of this processing bottleneck. The first part 
attempts to use image stitching to combine different camera perspectives into one feed to remove 
the need for running the same body and face-tracking models across two different feeds. The 
second attempts to establish a global coordinate system using aruco codes for the two cameras. 
This coordinate frame would then allow the robots to run body tracking models selectively based 
on which feed provides the best view and easily feed it into an intention predictor upon 
transforming the models' landmarks. The research here covers the setup of the experiment, the 
process behind the two explored solutions, and the assessment of their effectiveness. 

  



1 Introduction 

1.1 Background  

Human-robot collaboration has been an emerging field within computer and cognitive science. As robots 
become more adept at autonomously comprehending and interacting with their surroundings, the scope of 
their applications and deployment contexts rapidly continues to broaden. Robots have already proven to 
excel in structured settings when trained to execute well-defined, heavily-conditioned tasks through 
automation. Due to continued research in this field and the integration of robots into industry, robots are 
increasingly able to tackle diverse tasks in unstructured settings. This rise in robot autonomy has created 
more demand for developing robots capable of functioning in different environments and collaborating 
with humans to achieve common objectives.  

Creating robots that can effectively cooperate with humans entails addressing numerous new challenges 
and complexities. These systems must be able to have a good enough understanding of their environment 
to anticipate actions, communicate and coordinate efforts with their human partners. These robots can 
also seriously injure and put the lives of any humans and animals in their surrounding area at risk so they 
must be capable of prioritizing and ensuring safety. Due to these constraints, it might be a while before 
we see large-scale robot assistants in our homes or in rapidly changing environments. Nevertheless, there 
are many environments with enough structure for us to introduce collaborative robots into. The goal of 
this research project is to build a robot capable of assisting and protecting an electrical technician as they 
are tasked with diagnosing and resolving faults within a junction box designed to simulate a compact 
heating, ventilation and air conditioning(HVAC) system. This report focuses on the necessary physical 
setup for building such a robot and how to leverage different computer vision algorithms to inform the 
robot about its environment.   

2 Experimental Setup  

 

Figure 1: Physical setup 

The physical setup is located in Professor Scassellati’s social robotics lab on the fifth floor of Arthur K. 
Watson Hall as shown in Figure 1. The setup is built upon a desk approximately 3 feet above the ground. 
At the center of this table sits Universal Robotics’ UR5e robotic arm. The UR5e is an adaptable 
collaborative industrial robot that will act as our robot agent and is equipped with a hand-e gripper to 



allow it to interact with our environment. To the left, there sits a safety switch that has a lever that will be 
used to control power to the system.  

To the right of the setup sits the junction box that simulates the HVAC system. In it sits a condensed 
collection of electrical components that one might find within a real heating and ventilation system as 
shown in Figure 2.  

 

Figure 2: Composition of the junction box 

There are four cameras set up around the robot to give the robot system the ability to view and, with the 
assistance of machine learning models, understand its surroundings. The camera that captures the most 
information about the environment is the angled camera mounted in the top left corner of the 8020 
frames. This is an Azure Kinect from Microsoft that has a view of the electrical technician, the table that 
holds the tools and a view of the junction box. The view of the junction box is occluded when the robot 
arm is in operation which necessitates the need for a second perspective. This is where the Logitech 
camera comes into play as it is positioned above the safety switch which sits directly opposite from the 
junction box. The other Logitech camera is positioned in the bottom left corner of the junction box and is 
angled towards the front of the desk to be able to track the gaze of the electrical technician and determine 
which part of the junction box they seem to be looking at. The last camera is an Azure Kinect positioned 
in the center of the system and is pointed downwards towards the table we will use to track which tools 
the electrician picks up to diagnose the HVAC system.  

3 Image Stitching 

3.1 Motivation 

Although both the angled Kinect and safety switch Logitech offer clearer perspectives on the 
human agent and the junction box respectively, they also capture a lot of redundant information. 
In order to capture as much information on the human agent and the junction box and its 
components, this means we would have to run our models for tracking the human’s body pose, 
body movement, head pose and hand movement across both fields. This poses a challenge 
because to be able to track this information, we would need to run multiple models across both 
feeds and collect all of that data across both camera feeds. Doing this in addition to controlling 
the robot and running an intention predicting model that processes all of this data poses a 
computational bottleneck. This is especially problematic because human collaboration requires 



fast data processing for timely robot intervention. In order to lessen the computation load, we 
decided to try and consolidate both camera feeds to lessen the data recorded to feed into our 
intention predictor by stitching the relevant information of both feeds and passing that into the 
model.   

Image stitching is a well-studied field within computer vision but the task of combining two 
images is not trivial. In order to be able to stitch two different images, we have to be able to find 
similarities between the two frames in question, project one image onto the other based on those 
similarities and then find a way to blend those two images together[1].  

3.2 Feature Detection 

In order to find similarities between the two feeds, I explored and implemented different feature 
detection algorithms. To test the base functionality of my program I used a simplified stitching 
task using images from the camera feeds as shown in Figure 3. 

 

Figure 3: Camera Feed Source and Destination images  

The first technique that I explored is using the Scale-Invariant Feature Transform(SIFT) 
developed by David G. Lowe.[2] It has been proven to be very useful in practice for image 
matching and object recognition under real-world conditions.[3] This is due to its ability to 
identify key points and their descriptors invariant to scale, rotation, and illumination changes. It 
involves five main steps: The first of which is detecting scale-space extrema using a Gaussian 
pyramid and the difference of gaussians. It then localizes these key points and removes the 
unstable ones by fitting a quadratic Taylor expansion and discarding low-contrast and edge-like 
key points. In order to achieve rotation invariance, a constant orientation is calculated using 
histograms of the gradient magnitude and direction of the pixels around each key point and then 
a reference orientation is assigned to each key point. The distribution of the directions of the 
gradients in a neighborhood is calculated again but this time the neighborhood is a circle and the 
coordinate system is rotated to match the reference orientation. Lastly, the histograms are 
normalized so that they only store their relations to each other and not the magnitude of the 
gradients. We are then left with descriptors invariant to illumination changes as well as invariant 
to the scale and rotation aforementioned. The SIFT descriptor worked well in identifying key 
points around the edges of objects, especially inside the junction boxes.  



 

Figure 4: SIFT detector key points overlayed on the camera feeds  

SURF is another feature detection algorithm that is popular in object recognition, image 
registration, classification and 3D reconstruction applications. It was developed by Tony 
Lindeberg and is partially inspired by SIFT in its model architecture. The use of integral images 
and box filters in SURF allows for faster scale-space construction and key point detection 
compared to the Gaussian pyramid and Difference of Gaussians used in SIFT. While SIFT 
creates a 128-element feature vector for each key point using gradient magnitude and orientation, 
SURF calculates vertical and horizontal Haar wavelet responses in 32 or 64 elements(depending 
on whether or not absolute values of the responses are included). While SIFT also assigns each 
key point a consistent orientation to make them rotationally invariant, this assignment in Haar 
wavelet responses is optional. Although this results in a rotation-sensitive descriptor, this 
optional operation and the lower dimensionality of SURF descriptors lead to faster matching and 
reduced memory consumption.[4] It also retains robustness to scale and illumination changes 
while significantly reducing computational complexity which I was hoping would make it 
suitable for this real-time application.  

  
 

 



Figure 5: SURF detector key points overlayed on the camera feeds  

 

The same year that SURF was released, another feature detector by Edward Rosten and Tom 
Drummond also was released for corner detection. FAST stands for features from accelerated 
segment test and is named after its ability to streamline the corner detection process. It does this 
by analyzing the circular region around a candidate pixel and classifies that pixel as a key point 
if there exists n contiguous sequence of pixels around it that are all brighter or darker past a 
specified threshold. In order to optimize this process, the algorithm optimizes the segment test. It 
does this by using a decision tree to check the intensity of pixels 1, 5, 9 and 13 and only 
proceeding if only 3 out of those pixels are above the candidate pixels intensity threshold. This is 
because the authors found this algorithm doesn’t work well if the number of contagious pixels n 
isn’t greater than 12. Although it’s estimated to be 300% faster than SIFT, FAST lacks rotation 
invariance which affects its robustness.[6] 

 

 Figure 6: FAST detector key points overlayed on the camera feeds  

In order to take advantage of SURF algorithms pace while also being able to detect as many 
features from the given image, Ethan Rublee created the Oriented FAST and Rotated BRIEF 
algorithm. The ORB algorithm starts by constructing a scale pyramid of the image using the 
FAST algorithm to quickly detect features to achieve scale invariance. [5] It selects the key 

points with the strongest Fast scores and uses image moments to calculate intensity centroids that 
then provide rotation invariance. The Brief algorithm then compares these pixels with patches 

around the key point and these pairs are rotated according to their rotation. This ensures rotation 
invariance and leaves us with binary descriptors which can be compared easily using hamming 

distance. 



 Figure 7: ORB detector key points overlayed on the camera feeds  

 

Table 1: Feature detectors’ performance across 200 frames 

Feature 
Detection 

Base Image 
Features 

Detected as key 
points 

Destination 
Image Features 
Detected as key 

points 

Computation time 
in seconds for 

both images (in 
seconds) 

SIFT 1689 1313 0.1415  
SURF 1174 873 0.6323  
FAST 4883 3962 0.0232  
ORB 3169 3037 0.0434  

 

3.1.1 Feature Matching 

The next step in image stitching is matching the generated key points from the feature detectors 
across both images. In order to optimize functionality and performance, I explored the most 
popular feature-matching algorithms which were the Brute-Force matcher and the Fast Library 
for Approximate Nearest Neighbors(FLANN) matcher.  

The Brute-Force Matcher works as its name suggests which is by comparing a descriptor from 
one image with all the other ones from the other until the list is exhausted. It used Euclidian 
distance for floating-point descriptors and Hamming distance for binary descriptors to measure 
feature similarity.[7] 



 

Figure 8: Brute Force Matcher on Sift feature extracted key points 

 FLANN on the other hand is more efficient as it optimizes the process by using converting the 
data into nodes grouped in tree-based data structures. It then runs the nearest neighbor algorithm 
on these feature nodes to approximate the nearest neighbor.[8] Although this makes it faster and 
finds potential mappings, we do not produce as many feature mappings because we apply the 
Lowe’s test. This test checks if the ratio of the distance between the first and second features is 
greater than the 0.75 threshold. If that is the case, it is considered a false positive and 
discarded.[2] 

 

Figure 9: FLANN matcher on Sift feature extracted key points 

Table 2. Brute Force(BF) feature matcher performance across 500 frames 

Feature 
Matcher 

Number of key 
point Matches 

Computation 
time (seconds) 

SIFT 441 0.025864 
SURF 159 0.006730 



FAST 1131 0.289646 
ORB 868 0.083703 

Table 2. FLANN feature matcher performance across 500 frames 

Feature 
Matcher 

Number of key 
point Matches 

Computation 
time(seconds) 

SIFT  32 0.0176701 
SURF 16 0.0051400 
FAST 98 0.1087849 
ORB 45 0.0410089 

 

3.1.2 Computing Homography and Image Blending 

Once we have generated the feature mappings, I needed to calculate the homography matrix 
using the Direct Linear Transformation algorithm to transform the points from one image to 
another. There are 8 degrees of freedom in a 3x3 homography matrix and since each match 
provides 2 constraints in its x and y coordinates, it takes at least 4 matching points to be able to 
generate this matrix. The feature mappings are formed into a linear system of equations and 
using Singular Value Decomposition(SVD), we can calculate the homography matrix.  

When we have more than 4 correspondences, we tend to have outliers which are mappings of 
points that have similar features but don’t actually correspond to the same point in the real world. 
SVD doesn’t deal well with outliers which means that this algorithm is usually paired with 
another algorithm like Random sample consensus(RANSAC) to remove them. [11]   

RANSAC works by iteratively selecting a random subset of feature matchings, estimating the 
homography using DLT and then measuring the alignment of all the other feature matches. The 
algorithm stops once a defined percentage of feature matches are aligned or the RANSAC 
algorithm reaches the end of a predefined number of iterations and the homography matrix with 
the highest portion of matches is selected.  

Once we have the transformation matrix, we now know which points from our source image 
correspond to which points in our destination image. Before transforming the source image, we 
pad the destination image with empty pixels to expand its dimension so that we don’t lose any 
information. In order to avoid the presence of seams at the points the images are stitched, we also 
have to account for exposure differences. By using mean value blending which just means 
assigning a pixel value the average of the base image and the transformed image, we can 
generate a seamless stitched image. 

3.2 Results 

Although the FLANN matcher produced fewer point matches as expected, there were not enough 
key points that were appropriately matched in order to render appropriate transformations. All of 



the FLANN images came out with distorted rays as shown in the BF outputs of SURF FAST and 
ORB in Figure 10. The Brute Force matcher for SURF on the other hand, which was able to 
capture many key points invariant to scale, illumination and rotation was able to render a 
stitching that had a lot of defects.  

 

 

Figure 10: BF matcher renders (Top row: SIFT and SURF, Bottom row: FAST and ORB) 

Although changing the number of key points rendered did lead to small improvements in the 
renders of the surf matcher, the angle and difference in focal point height of the cameras was too 
different for any useful stitching across all models. In order to fix this, I realized the cameras 
need to be closer to one another. There is a camera already pointed at the desk that can be used to 
gather information about the tools being used so I experimented with different found camera 
positions to find what worked best. Images stitched from close to the same height seemed to 
perform best in this stitching task so I found a configuration that allowed for that while still 
being able to see the junction box and the person. Afterward, I installed a horizontal 8020 bar 
onto the UR table frame and mounted two Intel RealSense D435 Depth Camera’s as shown in 
Figure 11. 

  



    

Figure 11: new camera setup and their corresponding FOV 

Running the feature detectors and matchers on the updated camera location significantly 
improved the outputs for the image stitcher. Although the number of key points and computation 
time remained similar, the feature matchers performed much better. Due to the lack of significant 
rotation, I was able to use the FAST feature detector and approximate matches using the FLANN 
detector to generate the stitchings shown in Figure 12. 

        

Figure 12: Image stitchings with new camera positions 

After generating a suitable image stitcher for the environment, I wanted to test how it performed 
on frames where we have a human agent interacting with the junction box. After saving the feeds 
of a human agent and his hands testing the components in the box using a digital multimeter, we 
stitched them together. We were then able to test the performance of these stitched images by 
running it through Google’s MediaPipe’s body pose tracker and hand detector. We then 
overlayed those landmarks over the stitched image as shown in Figure 13. You can see from that 
image that the body pose model runs seems to map correctly but the left arm vectors and hand 
are not being picked up by either model.  

 



 

Figure 13: Stitched image of Human agent with Hand tracker and Body Pose models overlayed 

4 Coordinate Frame Transformation 

4.1 Aruco Marker  

Another potential solution I explored for optimizing the model load sharing was to try 
establishing a universal coordinate frame for the two camera feeds. This would allow for 
different machine learning models to track the environment and the human using the same 
relative coordinate frame to then feed into the intention predictor. In order to implement this, I 
used aruco codes to obtain experimented with aruco codes. 

Aruco codes are a type of fiducial marker that have an internal binary pattern used to encode an 
identifier. These codes are arranged as white square pixels on a black background and the 
contrast allows them to be detected from far away and in any orientation. The OpenCV aruco 
library handles all the detection and identification for us but in order be extract its pose, I needed 
to capture the realsense camera’s intrinsic matrix(its focal length and principal point) and the 
camera’s distortion coefficients using the realsense Robot Operating System(ROS) camerainfo 
topic. I then fed these matrices into OpenCV’s aruco pose detector which will give us the 
translation vector and rotation matrices. We can then calculate the rotation matrix for a 4x4 
affine transformation matrix by taking the dot product of the two aruco pose rotation matrices. 
To get the translation vector, we first compute the inverse transformation of the first marker 
which is the dot product of the second markers rotation matrix with the inverse transformation of 
the first marker which then gets added to the second markers translation vector.[10] 

The cameras also tend to move around a lot so I created the calibration board shown in Figure 13 
based on the relative placements of the junction box components. 



 

Figure 13: Calibration board with aruco codes with unique identifiers listed here. (1) Blue Bulb (Compressor), (2) Condenser 

Fan, (3) Dual Plug Outlet, (4) Heater Fan, (5) Red Bulb (Heater), (6) Gaze webcam, (7) Contactor Relay, (8) SPST Fan Relay, 

(9) Electric Heat Sequencer, (10) DPDT Switching Relay, (11) Power Transformer, (12) Circuit Breaker, (13) Terminal Block, 

(14) Thermostat with Display 

 

5 Conclusion 

The image stitching approach seems promising for consolidating the necessary camera feeds 
with drawbacks in performance in the current environment. In order to be able to track a human 
using these stitched images, it would require getting cameras with a better RGB feed resolution 
and no distortion across the two camera feeds. The camera would also need to be placed at 
around the same height in order to be able to use off-the-shelf body and face tracking models. In 
addition, the feature detection, matching and transformation process took approximately a 
second to generate on the UR computer, which has a AMD® Ryzen threadripper 2950 16-core 
processor. This significant time delay for processing the images, the time required for running 
the necessary models on the output image and then the time necessary to feed those points into 
the intention predictor is not conducive to real-time feedback from the robot. 

The transformation coordinate system also has significant translation errors in its current state. I 
keep running into erroneous outputs as to which component was being touched when placing a 
coordinate in one frame and transforming the coordinates of that feed to the other feed’s 
coordinate frame. Figure 14 shows an example of these points being overlayed the feeds with the 
aruco code frame and position also overlayed onto the markers. These miscalculations 
sometimes accounted to over 8 inches in junction box target which is not viable for a junction 
box so densely packed.  



 

Figure 14: Point projection across the two camera frames 

6 Hardware Modifications 

6.1 Arduino and Relay Accessibility 

Throughout this project, I also worked to help develop the fault-triggering system that is 
controlled by an Arduino that sends signals to the solid-state relays on the back. Although the 
specific erroneous scenarios are still being developed, I 3D printed and installed a plastic handle 
and standoffs to make a sliding door on the back of the junction box. This allowed us to diagnose 
and debug errors within the safety system discretely while making sure that human participants 
are not aware of the fault-triggering mechanism during experiments. 

 

Figure 15: Modified junction box  

6.2 Safety Improvement 

We also installed a ground fault circuit interrupter(GFCI) for IRB purposes and also to protect 
our Electrical technician’s when we run user studies. The GFCI will sense when the amperage 
flowing into a circuit differs from the amount flowing out. It then turns off in less than one-tenth 
of a second if it senses a difference as small as 5 milliamps.  



7 Future work 

The image stitching approach with our current cameras does not seem to be a great real-time 
solution, but we have been concurrently developing the program that has all the models running 
on both cameras. Once we have designed and built the intention predictor model, we hope to test 
the extent to which the size of the data stream affects the delay in the models output. We also 
hope to explore other ways of optimizing this process like parallelizing the computation process 
by having the different camera feeds being processed on different computers and then 
communicating relevant information with each other through the same ROS network.  

I’m also hoping to fix the aruco code coordinate system transformation process by using charuco 
codes to calibrate the camera parameters instead of getting the values from the cameras ROS 
topic. This will hopefully fix the transformation errors to better asses the viability of selectively 
pairing specific models with the camera feed that has the best view of that part of the body. I am 
also hoping to test the image stitching performance again by utilizing the computer’s GPU to cut 
run time to better test its viability in this application.  
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