
Modernization and Analysis of a Neural Image
Captioner

Noah Weiner
EECS @ Yale

New Haven, CT
noah.weiner@yale.edu

Kaleb Gezahegn
EECS @ Yale

New Haven, CT
kaleb.gezahegn@yale.edu

Evan Strittmatter
EECS @ Yale

New Haven, CT
evan.strittmatter@yale.edu

Abstract—We focus on improving the accuracy of captions for
the NIC image to caption model from the paper Show and Tell:
A Neural Image Caption Generator. We retrain the network from
the paper using an open-source TensorFlow adaptation of their
model. The bulk of our contribution is modifying the codebase
so that (a) the user can optionally train on a subset of the
downloaded dataset instead of the entire dataset, (b) the user
can train on COCO data but can now also optionally train on
the SBU caption dataset, and (c) instead of taking images from
the local disk, the user can select to pull images via URL using
the COCO API. Part (c) better facilitates experimenting with
training on Google Colab, since loading thousands of images
into the Colab runtime is difficult. We train the NIC model on
COCO 2014, but also on the SBU caption dataset, a large dataset
that the original authors did not train on. Our inspiration for this
experiment comes from the aforementioned paper by Vinyals et
al., which specifically mentions that a major bottleneck for their
training process was the size and quality of available datasets.
The authors predicted that as the size of available image-caption
datasets increased, so would the accuracy of their model. To
measure results, we use the BLEU scoring metric to compare
ground truth captions to the captions generated by our network
for the validation data split. We also used humans (ourselves) to
evaluate the accuracy of the captions generated on the validation
data. We present some sample test images which we captioned
using the COCO- and SBU-trained networks.

I. INTRODUCTION

We focus on the problem of taking a JPG image and
attempting to produce a caption for it using a neural network.
Image-to-caption models are a growing “‘hot topic”’ in neural
networks. The ability to convert an image, typically composed
of hundreds of values for representing pixel data, to a short
sequence of words lends itself to many interesting applications
both in terms of data storage and translation efficiency.

The problem of image-to-caption generation demands a
fusion of computer vision and natural language processing
techniques. Not only does the model need to identify objects
in the image, but it also needs to identify how those objects
relate to and interact with each other which is a much more
complicated effort. This is a much more complicated task, so
a natural language model needs to be incorporated in order to
produce well-ordered sentences.

Image captioning is a relatively well-researched problem
since around 2015, but there is room for improvement, which
is why we train the model on other datasets and look for any
improvements in inference accuracy. Our general approach to

Fig. 1. The high-level architecture of the NIC model.

do this was to extensively modify an open-source TensorFlow
codebase based on NIC so that it could handle training on
fewer and varying datasets. After modifying the codebase, we
ran training and evaluation using the GPU partition on the
Yale HPC cluster, an Intel NUC, and an NVIDIA RTX 3060
GPU.

II. BACKGROUND/RELATED WORK

Captioning models evolved out of advancements in machine
translation and a need for improving the accessibility of im-
ages to the visually impaired community with [1]. It has since
grown into a significant branch of Machine Learning research
with improvements in computational power, robustness of
model architecture and growth of datasets allowing for much
more varied utility of this technology. It has led to better
performance in addressing accessibility issues [3] as well as
having broader applications that range from image indexing
on our phone’s photos app to assisting medical professionals
in breaking down X-Rays [2].

A. Caption Generation Models

In particular, we will be expanding upon the model proposed
in [1]. The model structure depicted in Figure 1., combines a
Convolutional Neural Network (CNN) with a Recurrent Neural
Network (RNN). The CNN performs object identification in
presented images, while the RNN then constructs a sentence
based on the objects identified in the CNN.

B. Model Evaluation Metrics

The performance of a caption generation model is evaluated
based on the accuracy of the captions it generates. Intuitively
one could do this by reading a generated caption, looking at



the image it was based on, and then assigning it a score then
and there. There are many proposed ways to do this, with most
involving humans rating captions on a scale from 1 to 4 with
4 being a perfect description without error, and 1 being no
correlation. Although this is the most accurate way to ensure
the quality of generated captions, it runs into major problems
with scalability. In order to extract data from a meaningful
sample size, raters will have to look through thousands or even
tens of thousands of captions, which is both time-consuming
and costly. As a result, research has searched for automated
methods to rate captions that align with the results of human
qualitative metrics, but without the associated manpower cost.

For a while, these autonomous rating metrics relied pri-
marily on the n-gram overlap score. Prevalent metrics include
Bleu, CIDEr, ROUGE, and METEOR. These metrics compare
generated captions with a human-made ground truth caption,
and assign each caption a score. A large portion of the overall
score is determined by a series of n-words that overlap between
the generated caption, and the ground truth captions, hence the
term n-gram.

• A man jogs down the street with a dog
• A man jogs down the street carrying a leash

This is an example of a 6-gram overlap as the words “A man
jogs down the street” are shared in both sentences. This is a
significant amount of overlap and would result in a high score
for this generated caption. In cases like this, the use of n-gram
overlap accomplishes exactly its purpose perfectly - ensuring
the generated caption matches a caption which is known to
match the image. In practice however, there are several flaws
with this method. The first being word overlap alone doesn’t
ensure an accurate caption

• A Brontosaurus takes a big bite of leaves from a tree.
• The little girl takes a big bite of cereal for her breakfast.

This is a 5-gram overlap with “takes a big bite of”, so both
sentences would receive a high similarity score, however,
they correspond to completely different images. Another more
significant problem is n-gram scoring metrics struggle to rate
novel sentences and as a result, discourage models from
generating them. Novel sentence generation is a critical part
of caption generation if the model is to accurately describe
previously unseen combinations of objects in an image.

• The gym was filled with lots of used equipment.
• People left their weights strewn across the floor after they

finished working out.

The only overlap between these two sentences is the word
“the”, however, both describe the same image. This means
despite being a perfect caption for an image, this caption
would receive a low score in an n-gram rating metric. To
compensate for these shortcomings, evaluation metrics will
lump in other factors to the overall score such as word overlap,
or length of the caption but the overarching problem remains
the same [4]. When compared to Human qualitative metrics,
these scoring metrics fall short [5], and even more promising
models like SPICE should not be used as a sole metric for

evaluation. Instead, they can be used to guide the development
of a model.

III. APPROACH

To train the NIC TensorFlow model on a large amount
of data, we used existing open-source code based on the
CNN→RNN network structure from the Show and Tell paper.

This section details the framework of your project. Be
specific, which means you might want to include equations,
figures, plots, etc.

A. Model Architecture

The NIC model is inspired by advances in machine trans-
lation emerging around 2014, whereby a sentence S in one
language was transformed into a translation T in a target
language by maximizing p(T |S), the probability that T is
correct given S. The key in such translation is to use an
encoder-decoder model, where an “‘encoder”’ recurrent neural
network (RNN) transforms S into a vector representation,
which is then fed into a “‘decoder”’ RNN that generates
T . In the case where the source is an image, NIC thinks
of the encoder as the object detector for the image, which
is implemented as a standard convolutional neural network
(CNN).

The model maximizes the conditional probability of the
correct image caption given the image. As [1] explains, this
probability (S|I) can be given by the equation

log p(S|I) =
N∑
t=0

log p(St|S0, ..., St−1) (1)

where N is the length of the caption sentence, St is this
word, and S0, ..., St−1 are the previous words. During training,
(S, I) is a training example pair, and want to optimize the sum
of the probabilities over the whole training set, using gradient
descent. In other words, we want to adjust the network’s
weights in a way that makes it more likely to predict each
next word of the caption sequence correctly.

The RNN portion of the model is used to implement
p(St|S0, ..., St−1). The words are represented using memory
cells ht, which are updated after seeing a new input xt using
the equation

ht+1 = f(ht, xt) (2)

where ht+1 is this value of the memory, f corresponds to
the chain of LSTM (long short-term memory) blocks, ht is
the last value of the memory, and the input xt corresponds to
the image and word. The image is represented by the CNN
output, and the word is represented using a word embedding
model, where words are represented as vectors in a predefined
relational vector space. These vectors can be thought of as
weights trained with the rest of the model.

A feed-forward LSTM chain is used for the RNN. LSTM
cells are commonly used for sequence generation, where this
output depends on the last output. The cells are controlled
by multiplicative logic gates, including the output gate, input
gate, and forget gate. LSTMs could be seen as flip-flops or



a similar kind of electronic memory cell, in that they have
their own sort of “enable” and “reset” signals. Each cell has
multiple weight matrices, but this single set of weight matrices
is shared among all cells. By using LSTMs, sequential control
elements can be fine-tuned to better teach the network how to
predict the next element of the sequence. A softmax function
is used to populate the output of the LSTM chain, which gives
the probability distribution pt+1 over all the words.

B. Loss Function

From [1], the goal in training is to minimize the loss
function

L(I, S) = −
N∑
t=1

log pt(St) (3)

which is really maximizing the probability of the correct
caption given the input image.

Once the model is trained, we can run test images by
sampling from the probability distributions to get the word
in a given index of the caption.

C. Accuracy Calculation

During training, the accuracy is computed by computing
the difference between the most probable next caption word
(found by taking argmax of the computed probability distribu-
tion over all words) and the ground truth next caption word.
This computation can be found in the build rnn() function in
model.py.

D. Code Modification and Functionality

The bulk of our project time was spent modifying the code
from the DeepRNN/image captioning repository. This code
needed extensive modification in order to run at all as it was
built to work with older versions of TensorFlow and Python.
We first modified it to be compatible with TensorFlow 2 and
Python 3. Once we got the code to run, we made many core
modifications for our project experiment, including but not
limited to: changing the data preparation functions to option-
ally pull COCO URL images instead of local filenames so that
during training, images could be loaded via the COCO API
instead of from disk; changing the data preparation functions
to only use the image IDs and corresponding captions for
the subset of COCO images stored in a local folder (instead
of extracting ALL image IDs and captions from the JSON
annotations file); change data preparation functions so that user
can specify a certain number of local or URL-fetched images
to extract captions for and load during training; adding a script
to download images and annotations file for the SBU dataset
into a local folder, and adding support for using SBU captions
dataset and annotations file instead of COCO during training
and evaluation. Adding support for SBU training and eval
was especially difficult due to SBU and COCO having very
different annotations file structures. Please see our GitHub
repo (linked in Conclusion and in supplementary files) for the
code and a detailed changelog and README.

The codebase optionally uses a pre-trained VGG16 object
detection and classification model for the CNN portion of the

network. We decided to skip training the CNN to save training
time, so we used this pre-trained .npy file.

The code for training generally functions in the following
way: on startup, the dataset is prepared in the following way:

• If “local” is set to True in the config file, the code
looks in a local folder for images and selects con-
fig.num train data of those images, extracts their image
IDs from the filenames, then looks in the COCO or SBU
JSON annotations file to find ground truth captions for
the corresponding images. If “local” is False, the code
looks in the COCO JSON annotations file and finds image
URLs and corresponding ground truth image captions for
the first config.num train data annotations. It then loads
the images via URL with the COCO API during training.

• The image-caption pairs are filtered by caption length,
and any pairs that have captions longer than con-
fig.max caption length are thrown out.

• A vocabulary is built containing all words found in all
ground truth captions. Each word is assigned an index.

• The image captions are converted into lists of word
indices (using the Vocabulary).

• A DataSet object is instantiated that contains the image
ids, image locations, and indexed captions.

• The TensorFlow model is created via the build rnn()
function in model.py, using tf layers.

• train() is called on the model using the DataSet.

IV. EXPERIMENTAL RESULTS

We ran three training experiments, the process and results
of which are outlined below.

A. Training Using 30000 COCO Images on HPC Grace

We trained for about 12 hours using 30000 of the COCO
train split images. The training was done on the Yale HPC
cluster’s Grace node, using the scavenge gpu partition. The
plots of accuracy over time and loss over time during training
are shown in Figure 2. We were only able to train for about
four epochs, with a batch size of 32. We achieved an ending
accuracy of about 0.25. Some sample test images that we
passed through the network are shown in Figure 3. We see
that the model makes mediocre captions.

B. Training Using 3000 COCO Images on NUC

We trained to completion using 3000 of the COCO train
split images. The training was mostly done on an Intel NUC
desktop with no GPU. The plots of accuracy over time and loss
over time during training are shown in Figure 4. We trained for
100 epochs, with a batch size of 32. We achieved an ending
accuracy of about 0.4.

Some sample test images that we passed through the net-
work are shown in Figure 5. We see that the model makes
decent captions!



Fig. 2. Training for four epochs using 30000 COCO train images, on HPC
Grace.

Fig. 3. Generated captions from the four epoch experiment training with
30000 COCO images. These captions are somewhat related to the image, in
that they identify present objects, but the sentences are garbled English

Fig. 4. Training for 100 epochs using 3000 COCO train images, on Intel
NUC.

Fig. 5. Generated captions from the 100 epoch experiment training with
3000 COCO images. These captions are better matches as the form coherent
sentences, and relatively accurate object identification



Fig. 6. Training for 100 epochs using first 3000 SBU train images, on Intel
NUC.

C. Training Using 3000 SBU Images on NUC

We trained to completion using 3000 (the first 3000) of the
SBU images. Training was done on an Intel NUC desktop
with no GPU. The plots of accuracy over time and loss over
time during training are shown in Figure 6. We trained for
100 epochs, with a batch size of 32. We achieved an ending
accuracy of about 0.2. To create an evaluation data split, we
took 100 images from the end of the dataset. The higher-
quality captions indicate that the time spent iterating through
multiple epochs is more valuable to the end result than a larger
captioned dataset.

Some sample test images that we passed through the net-
work are shown in Figure 7. We see that the model makes
nonsensical captions. We believe there might have been a
problem with training. We noticed that many of the 3000
images were pruned out of the dataset due to their captions
being longer than the max caption length parameter set in the
config file, so only 679 image-caption pairs were used in the
training. It seems like something else might have also gone
wrong since the BLEU evaluation scores for the SBU-trained
network didn’t make much sense either.

D. BLEU Evaluation Scores

We used BLEU as a guiding metric to compare the results of
our model to other trained models. Table I shows the BLEU-
1, BLEU-2, BLEU-3, and BLEU-4 scores computed during
the evaluation for each experiment. We see that something

Fig. 7. Generated captions from the 100 epoch experiment training with 3000
SBU Images. These captions are nonsensical.

probably went wrong in the SBU-trained network evaluation
process.

TABLE I
BLEU SCORE RESULTS

Experiment BLEU-1 BLEU-2 BLEU-3 BLEU-4
1 0.184 0.076 0.024 0.012
2 0.221 0.098 0.047 0.019
3 1.000 0.001 0.000 0.000

Unfortunately, we lacked the computing resources and time
to produce results matching the BLEU scores achieved in [1].
What’s interesting to note is that training on a much smaller
amount of data for many more epochs yielded much better
results than training on a much larger amount of data for very
few epochs.

Based on our human evaluations of the image captions
produced by the networks during the evaluation run, and on
our human evaluations of the captions generated for the test
images, we also select experiment 2 to yield the best results
and rank experiment 3 as having the worst results.

V. CONCLUSION

We’ve learned that training a complex, large model with
many parameters is difficult and takes an extensive amount
of time and computing resources. We’ve also learned that
tweaking the amount of data, number of training epochs, batch
size, and learning rate can affect training and that less data but
more epochs could be the way to go.

In the future, we’d like to try training the model on more
datasets, like the newer Conceptual Captions dataset from
Google AI. We’d also like to try tweaking the model structure
more, possibly by changing the number of LSTMs in the chain,
which according to [1] was set to 512 as the default. It would
also be interesting to swap out the pre-trained VGG16 for
some other pre-trained CNN like ResNet50 to see if that has
an effect on test accuracy.



Note: we have zipped in a supplementary text file, which
contains a link to the GitHub repo. We hacked through and
modified the code extensively (see commit history), and the
README contains a detailed changelog and instructions for
running training, eval, and test with either COCO or SBU.

REFERENCES

[1] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and Tell:
A Neural Image Caption Generator.” CVPR , page 3156-3164. IEEE
Computer Society, (2015).

[2] D.R. Beddiar, M. Oussalah, and T. Seppänen. ”Automatic captioning
for medical imaging (MIC): a rapid review of literature.” Artificial
Intelligence Review (2022): 1-58.

[3] W. Shaomei, J. Wieland, O. Farivar, J. Schiller ”Automatic alt-text:
Computer-generated image descriptions for blind users on a social net-
work service.” Proceedings of the 2017 ACM Conference on Computer
Supported Cooperative Work and Social Computing. 2017.

[4] K. Papineni, Kishore, S. Roukos, T. Ward, W. Zhu ”Bleu: a method for
automatic evaluation of machine translation.” Proceedings of the 40th
annual meeting of the Association for Computational Linguistics. 2002.

[5] P. Anderson, B. Fernando, M. Johnson, S. Gould ”Spice: Semantic
propositional image caption evaluation.” European conference on com-
puter vision. Springer, Cham, 2016.


